A Note on Error Estimates for some Interior Penalty Methods
نویسنده
چکیده
We consider the interior penalty methods based on the logarithmic and inverse barriers. Under the Mangasarian-Fromovitz constraint qualification and appropriate growth conditions on the objective function, we derive computable estimates for the distance from the subproblem solution to the solution of the original problem. Some of those estimates are shown to be sharp.
منابع مشابه
An A Posteriori Analysis of C0 Interior Penalty Methods for the Obstacle Problem of Clamped Kirchhoff Plates
We develop an a posteriori analysis of C interior penalty methods for the displacement obstacle problem of clamped Kirchhoff plates. We show that a residual based error estimator originally designed for C interior penalty methods for the boundary value problem of clamped Kirchhoff plates can also be used for the obstacle problem. We obtain reliability and efficiency estimates for the error esti...
متن کاملWeighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems
In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...
متن کاملContinuous interior penalty hp-finite element methods for advection and advection-diffusion equations
A continuous interior penalty hp-finite element method that penalizes the jump of the gradient of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for advection and advection-diffusion equations. The analysis relies on three technical results that are of independent interest: an hp-inverse trace inequality, a local discontinuous to continuous hp-interpola...
متن کاملCONTINUOUS INTERIOR PENALTY hp-FINITE ELEMENT METHODS FOR TRANSPORT OPERATORS
A continuous interior penalty hp-finite element method that penalizes the jump of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for first-order and advection-dominated transport operators. The analysis relies on three technical results that are of independent interest: an hp-inverse trace inequality, a local discontinuous to continuous hp-interpolation...
متن کاملStabilized interior penalty methods for the time-harmonic Maxwell equations
We propose stabilized interior penalty discontinuous Galerkin methods for the indefinite time–harmonic Maxwell system. The methods are based on a mixed formulation of the boundary value problem chosen to provide control on the divergence of the electric field. We prove optimal error estimates for the methods in the special case of smooth coefficients and perfectly conducting boundary using a du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005